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(Received 24 June 2020; accepted 4 November 2020; published 9 December 2020)

Understanding strongly interacting electrons enables the design of materials, nanostructures, and devices.
Developing this understanding relies on the ability to tune and control electron-electron interactions by, e.g.,
confining electrons to atomically thin layers of two-dimensional crystals with reduced screening. The interplay
of strong interactions on a hexagonal lattice with two nonequivalent valleys, topological moments, and the
Ising-like spin-orbit interaction gives rise to a variety of phases of matter corresponding to valley and spin-
polarized broken-symmetry states. In this paper we describe a highly tunable strongly interacting system of
electrons laterally confined to monolayer transition-metal dichalcogenide MoS2 by metallic gates. We predict
the existence of valley- and spin-polarized broken-symmetry states tunable by the parabolic confining potential
using exact diagonalization techniques for up to N = 6 electrons. We find that the ground state is formed by
one of two phases, both spin and valley polarized or valley unpolarized but spin intervalley antiferromagnetic,
which compete as a function of electronic shell spacing. This finding can be traced back to the combined
effect of Ising-like spin-orbit coupling and weak intervalley exchange interaction. These results provide an
explanation for interaction-driven symmetry-breaking effects in valley systems and highlight the important role
of electron-electron interactions for designing valleytronic devices.
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I. INTRODUCTION

The role of electron-electron interactions in determining
the many-electron ground and excited states in different ma-
terials is controlled by the ratio of Coulomb energy V to
kinetic energy T as V/T = rs where πrs

2 is an area per elec-
tron [1]. For small rs electrons in two dimensions (2D) are
well described by the Fermi-liquid theory but as rs increases,
density decreases, and the spin-polarized and Wigner crystal
phases follow [2,3]. In the 2D Hubbard model the electronic
phases are controlled by the ratio of on-site Coulomb energy
to the tunneling matrix element U/t . On a hexagonal lattice,
calculations predict a semimetallic phase followed by the an-
tiferromagnetic and Mott-insulating phase [4–6]. The U/t can
be tuned by controlling screening (U ) or controlling t . Recent
work showed that t can be significantly reduced by twisting
layers in bilayer graphene (BG) [7]. The quenching of tunnel-
ing results in strongly correlated system with Mott-insulating
and superconducting phases [8,9]. Recent experiments in BG
[10,11] and transition-metal dichalcogenides (TMDCs) point
to potential existence of spin- [12] and valley-polarized (SVP)
[13] interaction-driven broken-symmetry valley- and spin-
polarized states.

In this paper we focus on a new emerging highly tunable
strongly interacting system of N electrons laterally confined
to monolayer 2D crystal, such as MoS2, [14–20] by metallic
gates [21–35]. The confinement to a single atomic layer leads
to reduced screening and enhanced electron-electron interac-
tions manifested in large ∼300-meV exciton binding energies

[16,33,36–38]. Metallic gates can be used to define quantum
dots (QDs) with discrete levels with spacings ω and enable a
controlled charging of the QDs with N electrons. The ratio
V/T scales with ω as V/T = 1/

√
ω. In small GaAs QDs

at large ω, the ground state (GS) is well approximated by
configurations minimizing single-particle (SP) energy [39],
but in large QDs, for small ω, spin-polarized [39–41] and cor-
related phases emerge [39,42]. Here we combine the atomistic
multimillion atom description of SP states, lateral confin-
ing potential and realistic electron-electron interaction matrix
elements with accurate exact diagonalization techniques in-
volving up to 5 × 107 configurations to determine GS and
excited states of electrons in MoS2 QDs. We predict valley-
and spin-polarized ground states as well as intervalley antifer-
romagnetic ground states of up to N = 6 electrons, dependent
on the magnitude of ω.

The paper is organized as follows. Section II presents the
tight-binding model of a rectangular computational box of
MoS2 in the atomic site and Bloch state basis and includes
the details of the configuration interaction methodology with
Keldysh screening used to obtain many-electron states of
MoS2 QDs. In Sec. III we present the results on many electron
GS and excited states. Subsection III A discusses the two-
electron behavior and the role of spin-orbit coupling as well
as the effect of filling of multiple harmonic-oscillator shells.
Subsection III B includes the results on many-electron broken-
symmetry states for up to N = 6 electrons and predictions on
experimental signatures of these states. Section IV contains
conclusions and plans for future work.
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FIG. 1. (a) Rectangular computation box of monolayer MoS2.
Blue (yellow) atoms denote Mo (S) atoms. (b) Example of a
parabolic confining potential from the metallic gates (depth of
300 meV). White lattice represents the computation box in which
electrons are confined to form a QD. (c) SP energy structure of a
MoS2 QD. The HO shells are doubly degnerate due to valleys K
and −K . ω denotes shell spacing. Indices (n, m) label HO states.
Spin-down and spin-up energy levels are split by the spin-orbit split-
ting �SO, opposite in opposite valleys. HO shells are split by δ due
to valley topological moments. To obtain a half-filling for two HO
shells N = 6 electrons are needed. ESP

F denotes the Fermi level for a
noninteracting system of N = 6 electrons.

II. MODEL

Figure 1(a) shows the top view of a monolayer MoS2

lattice. The blue (yellow) atoms correspond to Mo (S) atoms
with 3d orbitals (3p orbitals) included in the SP Hamiltonian,
following Ref. [34],

ĤT B =
∑

iσ

Eiσ c†
iσ ciσ +

∑
〈i, j〉,σ

(Ti jc
†
iσ c jσ + H.c.)

+
∑

〈〈i, j〉〉,σ
(Wi jc

†
iσ c jσ + H.c.), (1)

where c†
iσ creates an electron on state iσ (σ is the spin),

and i carries an atom unit-cell index, orbital index, and
sublattice index. Eiσ are on-site energies and T (W ) are
6 × 6 nearest-neighbor (NN) (next nearest-neighbor (NNN))
hopping matrices between sites. Energies Eiσ include the
parabolic potential Vi generated by the gates [as shown in
Fig. 1(b)] on a site corresponding to index i with Vi = V (ri ) =
|Vmax|r2

i /(R2
QD) − Vmax for |ri| � RQD and 0 elsewhere. Vmax is

the depth of the potential and RQD is the radius of the QD. The
confining potential mixes the conduction band (CB) states,
lowers their energy into the energy gap of MoS2 and confines
electrons to the center of a QD.

To avoid edge states in the energy gap we apply periodic
boundary conditions, i.e., we wrap the finite computational
box with ∼106 atoms on a torus with periodic boundary con-
ditions. The Hamiltonian in Eq. (1) can now be written in the
basis of Bloch states as

ĤT B
k basis =

∑
k

∑
ασ

Eαa†
kασ

akασ

+
∑
kσ

∑
〈α,β〉

(eikdα,β Tα,βa†
kασ

akβσ + H.c.)

+
∑
kσ

∑
〈〈α,β〉〉

(eikdα,βWα,βa†
kασ

akβσ + H.c.)

+
∑
k,k′

∑
R,ασ

(ei(k−k′ )RVR,αa†
kασ

ak′ασ + H.c.), (2)

where R is position of a cell and α carries the orbital and
sublattice indices. dα,β is the NN or NNN vector between NN
or NNN orbitals α, β, and only the confining potential VRα

mixes the k states [22].
We diagonalize Eq. (2) to obtain valley-specific QD states.

A schematic of a typical low-energy SP spectrum of a QD
is presented in Fig. 1(c). It is doubly degenerate due to the
valley index +K,−K . The spectrum for each valley resembles
a 2D harmonic-oscillator (HO) ladder with shells separated by
the spacing ω, tuned by the depth of the confining potential
or QD radius [40,43]. A separate sixfold degenerate HO-like
spectrum originating from Q points is present at higher en-
ergies (not shown), although it is not occupied by electrons
for the range of ω considered here. The SP levels are labeled
with p, σ , where p = [(n, m), K] contains state index (n, m)
(HO quantum numbers, n + m determines the shell index,
and L = n − m is the angular momentum) and valley index
+K,−K , and σ denotes spin. The spin-orbit induced Zeeman
splitting �SO between spins [↑ and ↓ shown in red and blue,
respectively, in Fig. 1(c)] is opposite for both valleys.

A further modification of a simple HO ladder is a topolog-
ical splitting δ proportional to ω, exhibited by all electronic
shells. This splitting arises from the valley topological mo-
ments and results in opposite angular momentum L for the
lowest-energy states in +K and −K valleys.

We next turn to filling the SP spectrum with electrons up
to the Fermi-level ESP

f as illustrated in Fig. 1(c) for N = 6
electrons. Our goal is to understand the many-body GS and
excited states of interacting electrons and explain how the
interactions mix many configurations in forming correlated
electronic states.

The many-body Hamiltonian in the basis of SP QD states
reads

H =
∑
pσ

epσ c†
pσ cpσ + η

2

∑
pqstσσ ′

〈pq|V |st〉c†
pσ c†

qσ ′csσ ′ctσ , (3)

where epσ are SP HO states p, σ shown in Fig. 1(c)
and the second term includes Coulomb scattering between
these states, with η controlling the strength of the interac-
tions. We express the Coulomb matrix elements 〈pq|V |st〉
in Eq. (3) in the basis of atomic orbitals as 〈pq|V |st〉 =∑

i jkl Ap
i
∗Aq

j
∗As

kAt
l〈i j|V |kl〉, where A are solutions to the SP

Hamiltonian in Eqs. (1) and (2). We include only on-site short-
range integrals 〈ii|V |ii〉, and the long-range part is taken as a
classical Coulomb term. The Coulomb integrals are calculated
using the Coulomb potential with Keldysh screening [44,45]
in order to model realistic Coulomb interaction of charges in
2D materials. The Keldysh screening using the 2D Fourier
transform is written as [38]

V 3D
K (r − r′) = 1

ε∗
e2

4πε0

1

(2π )2

∫ ∞

−∞

2π

|k|
1

1 + 2πα|k|e−|z−z′ ||k|

× eik(ρ−ρ′ )d2k, (4)
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where α = 2.2 Å is the 2D polarizability and we take ε∗ =
2.5 = ε1+ε3

2 , where ε1 = 1.0 and ε3 = 4.0 are the dielectric
constants of the material layers below and above MoS2, taken
here as SiO2 and vacuum, respectively [46]. All results in
the following sections include Keldysh screening of Coulomb
interaction.

The N-electron configurations are constructed as |x〉 =∏
p,σ cpσ

†|0〉, and the wave function of the N-electron system
is expanded in all possible electronic configurations |x〉. The
Hamiltonian matrix in the space of configurations |x〉 is con-
structed and diagonalized giving exact eigenstates. E.g., for
N = 6 we find up to ∼5 × 107 configurations for M = 60 SP
orbitals, where M is the number of SP orbitals included.

We now turn to discuss the properties of N-electron
systems. We focus on N = 2, 4, 6 electrons because in a non-
interacting system filling (half-filling) the first s shell requires
N = 4 (N = 2) electrons and half-filling of the first two shells
is realized with N = 6 electrons.

III. RESULTS

A. N = 2 electron complex

In order to build the understanding of the role of interac-
tions in MoS2 QDs, it is instructive to first focus on N = 2
electrons on the first fourfold degenerate SP s shell. With no
SO splitting �SO, this system describes the half-filled lowest-
energy shell of BG QD [21,32,35] or a half-filled p shell
of a self-assembled QD [39]. The GS is determined by the
exchange interaction and can be understood in terms of spin
singlets and triplets.

With N = 2 electrons on s-shell orbitals in opposite valleys
the N = 2 electron spin states can be classified into three
spin triplets |T s

+〉 = |↑〉|↑〉, |T s
0 〉 = 1√

2
(|↑〉|↓〉 + |↓〉|↑〉) or

|T s
−〉 = |↓〉|↓〉. The total wave function is, therefore, simul-

taneously a valley singlet |Sv〉 = 1√
2
(|K〉| − K〉 − | − K〉|K〉).

The spin triplet valley singlet state |Sv〉|T s
−〉 is shown schemat-

ically in Fig. 2 A. In the absence of �SO, the energy of
the spin triplet configuration ET is composed of the sum of
SP energies of s-type (0,0) orbitals, the direct interaction V 0

D
and intervalley exchange V 0

X (+K,−K ) to give ET = e00,↑ +
e00,↓ + V 0

D (+K,−K ) − V 0
X (+K,−K ).

The interaction elements as a function of ω have been
shown in Fig. 3. The exchange interaction lowers the energy
of |T s〉 compared to |Ss〉. Exact diagonalization of the N = 2
electron system on the lowest s shell with �SO = 0 gives
|Sv〉|T s〉 as the triply degenerate GS due to the intervalley
exchange V 0

X (+K,−K ). This is in accordance with what has
been found for the half-filled p shells of QDs [47] and for BG
QDs [32], a two-valley system with negligible SO.

In TMDCs the Ising-like SO interaction leads to spin
splitting in the CB ranging from ∼3 meV in Mo-based to
∼30 meV in W-based material [13,17]. Turning on �SO de-
creases the energy of spin-down states in valley K as well
as of spin-up states in valley −K . For N = 2 electrons this
means that the spin triplets |T s〉 and spin singlets |Ss〉 mix
and the threefold degeneracy of the |Sv〉|T s〉 GS is broken
by the �SO. The splitting �SO competes with intervalley
exchange V 0

X (+K,−K ) (black squares in Fig. 3 right). For
such weak intervalley exchange V 0

X (+K,−K ) � �SO the

K -K

A

0 − 0 , −

E 
[m

eV
]

K -K

B

ΔSO
0

ΔSO

FIG. 2. Configurations A (spin polarized) and B (spin unpo-
larized) of N = 2 electrons in the s shell are valley unpolarized.
Electrons in A interact with direct interaction V 0

D and intervalley
exchange V 0

X (K,−K ) (both include Keldysh screening) but have a
higher SP energy due to SO splitting �SO. The electrons in B interact
only with V 0

D . The right panel shows the energies of A and B for
increasing strength of interaction η. Due to much smaller interval-
ley exchange compared to SO splitting V 0

X (K,−K ) � �SO, B has
always lower energy. B makes up the many-body GS for N = 2
electrons in one shell, which is valley and spin unpolarized.

spin-unpolarized state, depicted as configuration B in Fig. 2,
becomes the lower-energy state separated by a gap from the
spin-polarized states, configuration A in Fig. 2. This is shown
in Fig. 2 (right) for ω = 36 meV and varied η. Configura-
tion B can be written as a mixture of |Sv〉|T s

0 〉 and |T v
0 〉|Ss〉

and becomes the spin-valley singlet |Ssv〉 = 1√
2
(|Sv〉|T s

0 〉 −
|T v

0 〉|Ss〉) = 1√
2
(|K↓〉| − K↑〉 − | − K↑〉|K↓〉).

We now lower the level spacing ω and allow the second
shell of p-type SP states to be occupied by a second electron,

FIG. 3. Coulomb matrix elements determining the GS of N = 2
electrons in two HO shells. (Left) Direct Coulomb matrix elements
with Keldysh screening and (right) exchange Coulomb matrix ele-
ments with Keldysh screening. The direct interaction of electrons
on (0,0) and (1, 0) (L = +1) is the lowest (black dots on the left),
and they interact through the highest exchange (magenta dots on the
right).
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FIG. 4. Configurations A and D of N = 2 electrons are both spin
polarized with no valley polarization in A and full valley polariza-
tion in D. The electrons in (a) interact with intervalley exchange
V 0

X (+K,−K ), whereas the electrons in D interact with much stronger
intravalley exchange V +1

X (K, K ), which compensates the SP energy
cost ω. This competition generates a transition (right panel) as a
function of η. For a noninteracting case at η = 0, A is lower in
energy, but for an interacting system, D has lower energy.

e.g., as shown in Figs. 4 C and 4D. The transfer from
the s shell to the p shell costs SP energy ω + δ/2, but
it is compensated by gain in interaction energy. Instead
of V 0

D (+K,−K ) − V 0
X (+K,−K ) for configuration A,

the interaction is now V 1
D (+K,+K ) − V 1

X (+K,+K ) (the
superscript denotes L of the second electron). This change
lowers the energy of D compared to A and B. This is
because of the significantly stronger intravalley exchange
V 1

X (+K,+K ) compared to intervalley V 0
X (+K,−K ) (Fig. 3

right). There are two possible p-shell orbitals and two possible
N = 2 electron configurations, out of which D [with the
second electron in L = +1 (L = −1) orbital at +K (−K )]
is always lower in energy. It is clear if one compares the
direct and exchange interaction elements: V 1

D (+K,+K ) <

V −1
D (+K,+K ) and V 1

X (+K,+K ) > V −1
X (+K,+K )

(see Fig. 3).
This competition between configurations A and C and

D is shown for ω = 36 meV in Fig. 4 (right). For a non-
interacting system, at η = 0, the valley- and spin-polarized
configurations C and D with one electron on a p shell
have higher energy compared to valley-unpolarized configu-
ration A. However, as strength of interactions η is increased
for Keldysh screened Coulomb interactions, a transition is
present and the valley-spin-polarized configuration D moves
to the lowest energy. This transition can also be understood
by considering the N = 2 electron wave function. Config-
uration D is a product of spin triplet |T s

−〉, valley triplet
|T v

−〉, and, hence, electronic orbital s-p singlet |Se〉, written
as |D〉 = |Se〉|T sv

− 〉, where |T sv
− 〉 = |T v

−〉|T s
−〉 (corresponding

|T sv
+ 〉 is degenerate). All other spin, valley, and electronic

orbital configurations can be constructed in a similar way,
taking into account the nonzero �SO. For higher shells
D-like configurations |T sv

− 〉 (valley-spin polarized) compete

for the GS with the triplet configurations |T sv
0 〉 (valley-spin

unpolarized).

B. GS and excited states of N � 2 and M = 60

We have so far identified different possible phases of the
N = 2 electron system and different interactions competing to
produce the GS and excited states: SP energies, SO splitting,
topological moments, and direct and exchange intravalley and
intervalley interactions. We now describe results of exact di-
agonalization of the N = 2–6 electron problem as a function
of ω for a varying number of electronic shells. Converged
results for five shells per valley (M = 60 SP states) for N = 2
and N = 6 electrons are discussed below. All our numerical
results show spin-valley locking in the many-body GS with
spin ↑ (↓) electrons occupying valley +K (−K ) so that N↓ =
NK and N↑ = N−K , which is in line with our explanation of
the GS of the (N = 2)-electron system. This allows us to label
the GS with one polarization quantum number Ṽ = NK −N−K

N ,
denoting total valley polarization and equal here to the total
spin-polarization Ṽ = Sz

2
N = N↑−N↓

N .
The results for valley- and spin-polarizations Ṽ for N = 2

and N = 6 electrons are shown in the top panel of Fig. 4
whereas the corresponding energy gaps �EX−GS = EX − EGS

where EX is the first excited state and schematic electron
configurations are shown in the lower panel.

The colors in Fig. 4 (top) denote the degree of polar-
ization Ṽ : orange depicts full SVP with total |Sz| = N/2,
whereas dark green identifies a fully intervalley antiferro-
magnetic (IVAF) GS with total Sz = 0 (N↑ = N↓) and no net
valley polarization (NK = N−K ). Schematics corresponding to
IVAF and SVP phases are shown for both N’s. Clear phase
transitions from the IVAF GS to the SVP GS accompanying
the closure of energy gaps �EX−GS at critical energy spacings
ωC ≈ 9 and ωC ≈ 8 meV are visible for N = 2 and N = 6
electrons, respectively. For N = 2, the phases IVAF and SVP
correspond to the competing triplets |T sv

0 〉 and |T sv
± 〉, respec-

tively.
In the insets of Fig. 5. we show a schematic of the two com-

peting GS phases for N = 2 and N = 6 electrons with spin
↑ (↓) electrons shown with red up (blue down) arrows. IVAF
(left) involves N↑ = N−K = N↓ = NK = 1 and N↑ = N−K =
N↓ = NK = 3 for N = 2 and N = 6, respectively. The SVP
phase (right) is fully polarized with N = N↓ = NK = 2 (and a
degenerate time-reversed state with N = N↑ = N−K = 2) and
similarly N = N↓ = NK = 6 (and a degenerate time-reversed
state with N = N↑ = N−K = 6).

In order to detect the competing GS phases in an exper-
iment, one needs to consider the stability of these phases.
It is partly determined by the energy spacing between the
GS and the excited state �EX−GS , which, in turn, impacts
transport measurement. Closing of the energy gaps due to
phase transitions would affect the temperature dependence
and high-source-drain Coulomb diamonds in transport [48].
The computed energy gaps �EX−GS as a function of ω for
N = 2 (black) and N = 6 (red) reach several meV. The quan-
tum phase transitions between IVAF and SVP phases occur
when �EX−GS = 0.

The predicted here nature of the ground state, either
SVP or IVAF for the N-electron system will affect charging
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FIG. 5. Top: nature of the GS for N = 2 and N = 6 electrons for
varying ω. Colors depict the polarization quantum number Ṽ (see
the text for details): IVAF GS (dark green) and SVP GS (orange).
Bottom: the energy difference �EX−GS between the GS and the first
excited state for varying ω for N = 2 (black dots) and N = 6 (red
stars). Vanishing �EX−GS marks a transition in the nature of the GS
from the IVAF to the SVP phase (shown with dashed lines). The
insets give a schematic of the IVAF and the SVP GS phases (red and
blue arrows depict spin up and down).

energies obtained from Coulomb and spin blockade spectro-
scopies. Excited states shown in Fig. 5 could be obtained from
Coulomb diamonds in high source-drain spectroscopy. The
predicted gate-induced phase transition in QD would result in
temperature dependence of the CB spectra as the energy gap
collapses [48].

IV. CONCLUSIONS

Using atomistic theory combined with exact many-body
diagonalization tools we predict the existence of broken-
symmetry SVP and IVAF electronic states of interacting
electrons electrostatically confined in a parabolic QD in a sin-
gle layer of MoS2. These results highlight the important role
of electron-electron interactions for designing valleytronic de-
vices. We predict that SVP and IVAF states can be probed
experimentally in a Coulomb and spin blockade spectroscopy.
Large energy gaps between the many-electron GS and ex-
cited states suggest stability of these phases and the potential
for observing the SVP and IVAF states in transport experi-
ments. Future work will relate these phases with simulation
of transport measurements and results of intra- and interband
spectroscopies.
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