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A B S T R A C T

We describe here recent work on the electronic properties, magnetoexcitons and valley polarised electron gas in
2D crystals. Among 2D crystals, monolayer MoS2 has attracted significant attention as a direct-gap 2D semi-
conductor analogue of graphene. The crystal structure of monolayer MoS2 breaks inversion symmetry and results
in K valley selection rules allowing to address individual valleys optically. Additionally, the band nesting near Q
points is responsible for enhancing the optical response of MoS2.We show that at low energies the electronic
structure of MoS2 is well approximated by the massive Dirac Fermion model. We focus on the effect of magnetic
field on optical properties of MoS2. We discuss the Landau level structure of massive Dirac fermions in the two
non-equivalent valleys and resulting valley Zeeman splitting. The effects of electron-electron interaction on the
valley Zeeman splitting and on the magneto-exciton spectrum are described. We show the changes in the ab-
sorption spectrum as the self-energy, electron-hole exchange and correlation effects are included. Finally, we
describe the valley-polarised electron gas in WS2 and its optical signature in finite magnetic fields.

1. Introduction

There is currently interest in the electronic and optical properties of
van der Waals (vW) crystals [1–30]. Bulk van der Waals crystals are
found to be insulators, metals, ferromagnets, superconductors and
semiconductors. vW crystals are built of weakly bound atomic planes,
hence atomic layers from different vW crystals can now be peeled off
and reassembled into new materials with properties not readily avail-
able in nature [8,14–16]. When bulk vW crystal is reduced to a single
atomic layer, the properties can change drastically. For example, bulk
MoS2, a well-known transition metal dichalcogenide (TMDC), is an in-
direct gap semiconductor while a single layer is an example of a truly
two-dimensional, direct gap, semiconductor. TMDCs share hexagonal
lattice with graphene and the low energy spectra can be understood in
terms of massive Dirac Fermions [14]. The two nonequivalent valleys
can be addressed optically [12,13,17], topology leads to valley spin
Hall effect [9,10] and electron-electron interactions can lead to a
broken symmetry valley polarized electronic state [17]. The absorp-
tivity of 2D TMDC layers is very strong due to band nesting [26,27] and
excitonic effects are pronounced due to reduced dimensionality and
screening [14]. Here we describe some of our work toward the un-
derstanding of the electronic and optical properties of semiconductor
TMDCs [9,20,26].

2. Electronic structure of a monolayer of MoS2

We start with the electronic structure of a best known TMDC, MoS2.
Fig. 1 shows the ab initio band structure of a single-layer of MoS2 ob-
tained with the Abinit package [7,17,20]. MoS2 has a layered structure
formed by a triangular lattice of Mo atoms sandwiched between planes
of triangularly arranged S atoms, resembling honeycomb structure of
graphene when viewed from above. Analogous to graphene the first
Brillouin zone is hexagonal, with 6 K points at the six corners. Like in
graphene, the 6 K points can be divided into two groups of 3 equivalent
points, one around K and a second around -K. Because of broken in-
version symmetry, K and -K points are not equivalent. Moreover, as
seen in Fig. 1, in contrast with graphene, MoS2 is a direct gap semi-
conductor, with both the conduction and valence band edges located in
the K valleys. MoS2 exhibits an indirect-direct gap transition as a
function of the number of layers. It is indirect for bulk all the way down
to double layer and becomes a direct gap semiconductor only for a
single-layer, with direct gap corresponding to optical transitions in the
visible range. The Kohn-Sham energy gap in Fig. 1 corresponds to

=Eg 1.79 eV. Reduction of MoS2 to a single layer also breaks the in-
version symmetry, which gives rise to valley-dependent optical selec-
tion rules: transitions in K and -K valleys have been demonstrated to
couple to oppositely circularly polarized light [12,13,17].
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Fig. 1 shows the band structure of a single-layer of MoS2 with
contributions from different atomic d-orbitals of the metal, Mo, shown
in different colours. Top of the valence band = ±m( 2)d and the bottom
of the conduction bands =m( 0)d are built mainly from different Mo d-
type orbitals, unlike in graphene for which the low energy bands are
dominated by pz orbitals of the C atom. Strong contribution of the d-
type orbitals in MoS2 produces large SO-coupling resulting in large spin
splitting of the valence band. This splitting, of the order of 150meV at K
points, results in two classes of optical transitions, A and B
[4,5,7,17,20]. An important feature of the band structure is the ex-
istence of the additional conduction band minima at Q points. Such
shape of the conduction band implies that the conduction and valence
bands run parallel as a function of k, leading to band nesting, which
significantly enhances absorption by TMDCs compared to graphene
[20].

3. Tight-binding model for MoS2 and massive Dirac fermions

In order to understand important features of the band structure of
MoS2 a simple, tight binding (TB), model is needed. Guided by our ab
initio calculations [7] we construct such a model [20] starting with Mo
d- orbitals =±m 2,0d , even with respect to the plane and even combina-
tion of S p- atomic orbitals =±m 1,0p . As in graphene, we construct Bloch
wavefunctions for each d orbital of metal sublattice A and each p orbital
of sulfur sublattice B:

=

=

=

=

k r e r R

k r e r R

( , ) ( ),

( , ) ( )

A m N
i

N
ikR

m A i

B m N
i

N
ikR

m B i

,
1

1
,

,
1

1
,

d UC

UC
A i

d

p UC

UC
B i

p

,

,

(1)

where NUC is the number of unit cells. We next construct the tunneling
matrix elements between two sublattices in analogy to graphene:
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where V r( )A is the potential on sublattice A and R R R, ,B B B1 2 3 are posi-
tions of three nearest-neighbors measured from metal atom A. Evalu-
ating this matrix element at point K of the BZ gives matrix element
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where V m m( , )pd d p is a Slater-Koster matrix element for nearest-neigh-
bour Mo-S tunneling. In graphene the same matrix element for tun-
neling from Pz orbitals of sublattice A to nearest neighbor Pz orbitals of
sublattice B reads:

= + +( )A m K H B m K e e, , , , 1 .p p
i i(1) 2

3 (1) 4
3 (4)

In graphene without staggered potential, the destructive interference
between tunneling to three nearest neighbor atoms in graphene at K
points, Eq. (4), leads to vanishing tunneling matrix element and closing
of the energy gap at K points of the BZ. By contrast, in MoS2 con-
structive interference in tunneling to three nearest neighbor sulfur
atoms is responsible for the opening of a gap between the degenerate d-
orbital levels of Mo atom. This is because tunneling between Mo d-
orbitals and nearest neighbor p-orbitals of sulfur in MoS2, Eq. (3), in-
volves additional phase factors due to the different angular momenta of
the d-orbitals of Mo and p-orbitals of sulfur dimer S2, and is finite.
Hence we require that the tunneling matrix element, Eq. (3), be nonzero
at different K points. This is possible only for specific sets of md and mp

orbitals for a given K point. For a K-point = ( )K 0,a
2 2

3 finite tunneling
matrix element [20] can only be obtained for 3 sets of orbitals:

= = = = + = =m m m m m m( 0, 1), ( 2, 1), ( 2, 0)d p d p d p resulting in
a 6-band TB model. Coupling of each of the d-orbitals to different set of
p-orbitals removes the degeneracy of d-orbitals. As seen in Fig. 1 the
lowest energy state contributing to the top of the valence band is

=m 2d orbital, the next in energy is the bottom of the conduction
band made of the =m 0d orbital and the = +m 2d is high in the con-
duction band. By contrast, different orbitals are coupled at the point

= = = = = =m m m m m m( 0, 0), ( 2, 1), ( 2, 1)d p d p d p . As seen in
Fig. 1, this different coupling of the two sublattices leads to a different
ordering of bands at K and points. For example, =m 0d orbital con-
tributes to the bottom of the conduction band at K point but forms the
top of the valence band at points. Hence crossing of energy levels of
different d-orbitals is necessary when moving from K to points. This
crossing of orbitals results in complex band structure, a set of second
minima in the conduction band at Q points and band nesting. We il-
lustrate these effects in Fig. 2 a which shows the valence and conduc-
tion energy bands from K to points, from the tight binding model with
nearest and next nearest neighbor tunneling and ab initio DFT results.
We see the TB model reproducing very well the gap and dispersion at K
point as well as the appearance of the second minimum at Q point. The
second minimum at Q point due to crossing of different d-orbitals leads

Fig. 1. Electronic band structure of a single layer of MoS2 with SO included
calculated in DFT. Contributions from d-type orbitals are marked with colors.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. (A) Fit of the next nearest neighbour (NNN) TB model to DFT band
structure. (B) Joint optical density of states obtained from the TB model with
the peak originating in the band nesting near K and Q points.
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to band nesting, i.e., the energy of conduction band parallels the va-
lence band energy dispersion. The nesting of conduction and valence
band produces enhancement in the joint optical density of states shown
in Fig. 2b. Importantly, both nearest and next nearest neighbor tun-
neling processes need to be present in the Hamiltonian to correctly
describe the electronic properties of MoS2. For example, without the
Mo-S tunneling the system reduces to two decoupled triangular lattices
while without the Mo-Mo tunneling we get incorrect position of gaps
and masses.

The full six-band TB Hamiltonian can be reduced to a two-band
effective mass model Hamiltonian at = +k K q in the basis of the
conduction and valence band states at =K ( 1) and =K ( 1):

= + + ( )H q at
q iq

q iq( )
0

0 2
1 0
0 1 .x y

x y (5)

The Hamiltonian in Eq. (5) describes massive Dirac fermions (mDfs)
[20,21] as excitations of the TMDC, with = =a t3.193 Å, 1.4677 eV
and = 1.6848 eV [20] extracted from TB and ab initio calculations.

4. MoS2 response to external magnetic field

We now describe Landau quantisation of the Dirac fermion energy
levels. The energy spectrum can be obtained by transforming the mo-
mentum operator in the massive Dirac Hamiltonian, Eq. (5), into
creation and annihilation operators [13,20,21,23]. For K valley the
mDF Hamiltonian in magnetic field reads:
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, vF is the Fermi velocity =v ta l,F 0 is magnetic length

and we choose a symmetric gauge =A y x( , , 0)B
2 . Diagonalizing the

mDF Hamiltonian in Eq. (6) we find energy levels for the conduction
band ( >E 0) and valence band ( <E 0) as [20,21].
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is the intra Landau level index. Here +/- correspond to positive and
negative energy solutions. The eigenvectors are spinors in the basis of
conduction and valence band states at K point, consisting of LL states
differing by 1. The energy spectrum consists of positive and negative
energy levels symmetrically placed in both valleys for >n 0 and an
asymmetric 0th LL for =n 0 placed at the top of the valence band in K
valley and at the bottom of the conduction band in the -K valley. This
creates a valley Zeeman splitting for electron in the conduction band as
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where c is cyclotron energy.
Even greater asymmetry is apparent if spin-orbit splitting is in-

cluded. The Hamiltonian for both spin up and spin down in the K valley
reads:
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where SO
C V/ is the spin splitting for the conduction (valence) band. The

solutions of the Hamiltonian in Eq. (9) are
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If we assume that SO
C

SO
V , both positive and negative energy levels

will split due to the mixing between conduction and valence band LLs
and due to large SO

V . Only the 0th LL at the bottom of the conduction
band in the -K valley will have a negligible spin splitting, enhancing the
asymmetry between the valleys.

5. Optical properties of massive Dirac Fermions

We now discuss the optical properties of massive Dirac Fermions in
MoS2 in a magnetic field [11,18,21,25]. We start with inclusion of e-e
interactions into the massive Dirac Fermion model. With index i in-
cluding all the quantum numbers of the massive Dirac Fermions, in-
cluding the two nonequivalent valleys, and c c( )† being the annihilation
(creation) operators, the Hamiltonian for interacting massive Dirac
Fermions in magnetic field reads:

= +H c c V c c c c1
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Here the first term describes the single particle spectrum of mDf and the
second term describes their interaction. In Eq. (11)Vijkl are the two-body
matrix elements =V Vijkl i j k l , evaluated using mDF wavefunc-
tions = = ++ + +n m C n m V1, ,i nm n n

/ / / and two-body
interaction potential V r r( , ). Here, for comparison with 2D electron

gas, we use bare Coulomb interaction =V r r, e
r r

2
. Because con-

duction and valence band wavefunctions are a linear combination of
two different Landau levels in the valence V and conduction C band,
the expression includes many terms characterized with contribution
from Landau level envelope and rapidly oscillating conduction and
valence wavefunctions at K-point. We illustrate this fact by showing the
electron-hole attraction Coulomb matrix element for hole in the 0th

Landau level m0,0 and electron in first excited level
++ +m C m V0, 1,1 1 :
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We see that Coulomb matrix element is a product of band contribution
CV V VC and envelope function contributions. Because of massive
Dirac fermion nature of our quasi-electron, there are contributions from
0 and 1 Landau levels. The value of VCVVC in Eq. (12) is the strength of
the interaction between electrons in conduction and valence bands and

m m V m m0, ;0, 0, ;0, are Coulomb matrix elements for 2D electrons
in a magnetic field. [23]

To describe the ground state of weakly interacting mDf we populate
the valence band of mDf LLs with electrons in both K and K valleys to
form a Hartree-Fock groundstate (HFGS) > =GS

> >< <c c(^ ) 0 (^ ) 0K
V

K
V

( )
†

( )
†

F F
where corresponds to a collective

index = n m( , , ), excluding the valley index. We focus here on the
transitions between the top of the valence and bottom of the conduction
band levels. We start with the lowest Landau levels of both valleys
populated with a fixed total number of electrons, and increase the
number of filled LLs with increasing energy cut-off Ec, as shown in
Fig. 3a. In the presence of valley Zeeman splitting, increasing the total
number of particles and hence energy cut-off EC , changes the number of
particles in each valley, as shown in Fig. 3a. Due to asymmetry in the
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structure of LLs some values of EC correspond to unequal number of
particles in both valleys and the system develops valley-polarisation
[12]: = N N

N
K K , where NK K( ) is the number of particles in valley K

(-K) and N is the total number of particles in both valleys. The oscil-
lation of the valley polarization is shown in Fig. 3b.

Once we have the groundstate we form a single excitation in a given
valley, an electron-hole pair, from the GS of the form:

> = >ij c c GS(^ ) ^ .j
C

i
V† (13)

Such a pair is not the eigenstate of the interacting Hamiltonian. We next
form a magneto-exciton as a linear combination of excited pairs.

= +A c c GS( )f ij ij
f

j
C

i
V . The exciton wavefunction is obtained by

solving the Bethe Salpeter equation for amplitudes Aij [22]:
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where i is the exchange self-energy of mDf in the valence band and j
is the exchange self-energy of electron in the conduction band due to
filled valence band:
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Once the exciton wavefunction f and energy levels Ef are obtained
from the BSE, the absorption spectrum is obtained from the Fermi’s
golden rule:
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V is the interband polarization operator corre-

sponding to photon absorption, =dij n
C

n
V is the dipole moment and

the final state is = +A c c GS(^ ) ^f
ij

ij
f

j
C

i
V . The dipole moments satisfy

the following selection rules = =d m: 0, 0ij and = ±n 1.

6. Magneto-excitons of massive Dirac Fermions.

We now discuss massive Dirac Fermion magneto-exciton spectra for
a single valley. We start by determining self-energy. To calculate self-
energy we need to populate Landau levels in the valence band of both
valleys. But only +K valley contains the =n 0 Landau level hence there
is Valley Zeeman splitting in the valence band. Fig. 3 shows the po-
pulation of LL levels for noninteracting and interacting mDf.

The self-energy renormalizes the LLs in conduction and valence
band which affects the valley Zeeman splitting. It shows oscillatory
behavior, following the valley polarization as shown in Fig. 3b. For an
unpolarized case it decreases with the number of particles N and for
polarized case it increases in value.

We now discuss how these electronic properties can be detected in
an optical measurement. After populating the valence band LLs we
compute a single exciton (Fig. 4) by solving the BSE.

In Fig. 4a we show the different approximations to the computed
absorption spectrum for an example of the GS made of particles in the
topmost LL of the valence band. We start from absorption by non-
interacting electrons, Fig. 4a-1. All transitions from filled m states are at

the same energy, = + + +( )E v2
2 2

2 equal to the single particle gap
plus contribution from 1st Landau level in the conduction band. Next,
we renormalize initial and final states by the the self-energy, Fig. 4a-2,
which leads to the blue shift of transition energy. In next step, Fig. 4a-3,
we include electron-hole attraction, which leads to a red shift balancing
the exchange self-energy contribution and a spread in transition en-
ergies. Finally, we allow for correlation effects, i.e., scattering of dif-
ferent electron-hole pair configurations, responsible for renormaliza-
tion of oscillator strengths of different transitions, Fig. 4a-4. The
absorption peaks evolve further as the exchange interaction is switched

Fig. 3. (A) Illustration of the valley polarization in mDF electron gas. Setting
the cut-off energy together with the number of particles created polarized or
depolarised GS. (B) Valley Zeeman splitting vs. the valley polarization.

Fig. 4. (A) Absorption spectra for different contributions in the Hamiltonian. Colors stand for spins. (B) Diagram of the A and B exciton configurations. Colors have
the same meanings on both graphs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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on and as the spin configurations are allowed to couple (Fig. 4a-5-6).
We find the final absorption maximum to be blue-shifted with respect to
the single-particle gap. Further studies will include screening of Cou-
lomb interactions and intervalley scattering effects.

7. Valley-polarised electron gas in MoS2

One of the most important properties of TMDCs is the simultaneous
presence of two nonequivalent valleys and strong spin orbit coupling
resulting in spin-valley locking. Effectively, spin down electrons are
found in valley K and spin up electrons in valley −K. Hence we can
think of valley up and valley down in the same fashion as we think of
spin up or spin down electrons. In the presence of finite electron density
we can put half of electrons into valley +K and half into valley −K. In
Hartree-Fock approximation the total energy of valley unpolarised state
as a function of interparticle separation rs is given by

=E r , 0tot s r r
1 8 2

3
1

s s
. Alternatively, we can put all electrons into only

one, for example, +K, valley with total energy of valley polarized state

=E r , 1tot s r r
2 16

3
1

s s
. We see that we have to pay a penalty in kinetic

energy but gain exchange energy in valley polarized state. Valley po-
larized electron gas (VPEG) becomes a lower energy state for

> =r rs s
8(2 2 )

3 . The optical transitions in TMDCs are valley selective,
e.g., optical recombination from electron in valley +K results in sigma
+polarized photon emission. Hence, even for unpolarised exciting light
the emitted light should be circularly polarized. This is what was ob-
served by Scrace et al. [17]. as summarised in Fig. 5.

At zero external magnetic field the emitted light is circularly po-
larized. The degree of light and hence, electronic polarization, increases
with increasing magnetic field for one direction of magnetic field due to
spin-valey locking. When direction of magnetic field is reversed, the
splitting between two valleys is reduced and so is the light polarization.
Much theoretical and experimental work is needed to develop a com-
plete understanding of valley polarized electron gas.
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